Демоверсия ЕГЭ по математике (профильный уровень) 2019 года
Единый государственный экзамен по математике. Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2019 года по математике (профильный уровень) подготовлен Федеральным государственным бюджетным научным учреждением «Федеральный институт педагогических измерений» (ФИПИ)
13. а) Решите уравнение $2\sin \left(x + \dfrac{\pi}{3}\right) + \cos 2x = \sqrt{3} \cos x + 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -3\pi; -\dfrac{3\pi}{2} \right]$.
14. Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки $M$ и $N$ — середины рёбер $AA_1$ и $A_1C_1$ соответственно.
а) Докажите, что прямые $BM$ и $MN$ перпендикулярны.
б) Найдите угол между плоскостями $BMN$ и $ABB_1$.
15. Решите неравенство $$\log_{11} \left( 8x^2 + 7 \right) - \log_{11} \left( x^2 + x + 1 \right) \geqslant \log_{11} \left( \dfrac{x}{x + 5} + 7\right).$$
16. Две окружности касаются внешним образом в точке $K$. Прямая $AB$ касается первой окружности в точке $A$, а второй — $в$ точке $B$. Прямая $BK$ пересекает первую окружность в точке $D$, прямая $AK$ пересекает вторую окружность в точке $C$.
а) Докажите, что прямые $AD$ и $BC$ параллельны.
б) Найдите площадь треугольника $AKB$, если известно, что радиусы окружностей равны 4 и 1.
17. 15-го января планируется взять кредит в банке на 1 млн рублей на 6 месяцев. Условия его возврата таковы:
− 1-го числа каждого месяца долг возрастает на целое число $r$ процентов по сравнению с концом предыдущего месяца;
− со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
− 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей
Дата | 15.01 | 15.02 | 15.03 | 15.04 | 15.05 | 15.06 | 15.07 |
Долг (в млн рублей) | 1 | 0,6 | 0,4 | 0,3 | 0,2 | 0,1 | 0 |
Найдите наибольшее значение $r$, при котором общая сумма выплат будет меньше 1,2 млн рублей.
18. Найдите все положительные значения $a$, при каждом из которых система $$\begin{cases} (|x| - 5)^2 + (y − 4)^2 = 9, \\ (x + 2)^2 + y^2 = a^2\end{cases}$$ имеет единственное решение.
19. В школах #1 и #2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы #1 в школу #2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе #1 уменьшиться в 10 раз?
б) Средний балл в школе #1 уменьшился на 10%, средний балл в школе #2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе #2 равняться 7?
в) Средний балл в школе #1 уменьшился на 10%, средний балл в школе #2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе #2.